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Abstract

When learning processes depend on samples but not on the order of the informa-
tion in the sample, then the Bernoulli distribution is relevant and Bernstein polynomials
enter into the analysis. We derive estimates of the approximation of the entropy func-
tion xlogx that are sharper than the bounds from Voronovskaja’s theorem. In this
way we get the correct asymptotics for the Kullback—Leibler distance for an encoding
problem.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The approximation properties of the Bernstein polynomials for the entropy
function

f(x)=—xlogx — (1 —x)log(l — x) (L.1)
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are of interest since f”(x) = —[x(1 — x)]”' and, according to the Voronovskaja
theorem, cf. [10, p. 22], the pointwise limit
Tim n{/(x) - B[f]()} =} (12)

is constant for all xe (0, 1). On the other hand, the difference f — B,[f] assumes the
value 0 at the boundary points x = 0, 1 for all neN. Thus the convergence in (1.2)
cannot be uniform, though " does belong to the O-saturation class for the Bernstein
polynomials. Further information on the global approximation behavior can be
found, e.g. in [3,8,14]. More surprising, however, is the fact that although f(x) —
B, [f](x)=0 for all xe[0,1] with equality exactly for x = 0,1, the value § is always
exceeded by the approximation which can be phrased as

c=liminf sup n{f(x)— B,[f](x)}>1
=0 xelo,1]
It is worthwhile to mention that the abscissas where the maximum is assumed tend to
the boundary like O(n~") as n increases.
It can be shown relatively easily that

S = BiAI() 25 + o)

holds uniformly in the interior of [0, 1] as long as boundary regions of size O(n~'*¢),
£>0, are excluded, see (2.7). This, however, is insufficient for the application we bear
in mind, in particular as this way the points where the maximal deviation takes place
are not captured. For that reason we establish an improved estimate in Theorem 1
which extends up to boundary regions of size O(n~'). The crucial tool to achieve this
goal is a one-sided estimate for the Bernstein polynomials of convex functions which
is applicable to the Taylor polynomials of f here.

The improved estimate enables us to close a gap in an application from Learning
Theory which is concerned with the optimal encoding of the output of a random
source under the assumption that a sample of length n is available. Carefully
analyzing the difference between the entropy function and its approximating
Bernstein polynomials, we obtain improved asymptotics compared to [9]. For points
close the to left boundary, i.e., when nx is (uniformly) bounded, the asymptotical
behavior is captured by a function that can be accessed numerically. In contrast to
[9] those numerical estimates are only needed for the representation of one particular
univariate function. The gap for x between cn~' and cn~ '~ which had still been
present in [5] is thus closed. It is remarkable that the improved asymptotical estimate
becomes available due to methods from Approximation Theory which investigate
the approximation behavior of n{f — B,[f]}, thus remaining in the “finite”
Bernoulli probability distribution, instead of passing to the Poisson distribution as
it is traditional in Bayesian statistics.

The univariate entropy function f from (1.2) corresponds to sources that use a
binary alphabet consisting of two symbols only. To study more general sources, we
need to extend the estimates to multivariate Bernstein polynomials on simplices
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which will be done by reducing it to sums over univariate Bernstein polynomial
approximations.

2. Interior estimate

In this section we consider the approximation of the univariate function (1.1) by
Bernstein polynomials

B =Y B (),
k=0
where
Bl(x) = <Z>xk(l — X"k, 2.1)

The aim of this section is an estimate of the approximation error in the interior that
is sharper than Voronovskaja’s bound.

Theorem 1. Let [ be defined by (1.1). Then,

. . 1 1 1 .15 15
— >— - —<x<l —— .
/() = Bl /1) “2n + 20m%x(1 —x) 1212 for n 1 n (22)

The following observation from [2,11] provides a useful tool, and its short proof
will be given for the sake of completeness.

Lemma 2. If f is concave in (0, 1), then we have

f(x) = B,[f](x)=0 for 0<x<I.

Proof. Given x; €[0, 1], let Q; be the linear polynomial that interpolates f and f” at
x1. Since f is concave, we have Q; —f>0 in [0,1]. The mapping f+> B,[f] is
performed by a positive linear operator, and it follows that B,[Q; —f]>0.
Moreover, linear functions are reproduced by Bernstein polynomials. Hence,

Bu[f1(x1) = Bulf = Qi](x1) + Bu[Q1](x1) < Bu[Q1](x1) = Q1 (x1).
=/ (x1).
This holds for any x; €[0, 1], and the proof is complete. [

A direct consequence is the following.

Corollary 3. Let n>4 be an even number, ") <0 in (0,1) and Q,_, be the Taylor
polynomial of degree n to f cat some xy in (0,1). Then we have in [0, 1]:

f - Bn[f} >anl - Bn[anl]-
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The inequality follows immediately from Lemma 2. The second derivative of
f — Q,_1 vanishes at x| and by Taylor’s formula it is not positive in the interval.

The evaluation of the Bernstein polynomials of Taylor’s polynomials requires the
following expressions:

The right-hand side coincides with n7°T,,(x¢) in terms of the functions defined in
[10, p. 13] and are provided up to s = 5 in [10, p. 14].

Proposition 4. Let 0<xy<1. Then we have x = x,

Bl — ) =D

x(1

B0 —xo)] =200 o)

Byl — x)] =37 “"‘) +x“n 1 6x(1 - ),

l—x x(1 —x
B —Xo { (I’l4

)[1 —12x(1 —x)}}(l — 2x).

The monomials (x — xo)", m>2, cause only contributions of the order n~2. This is
consistent with Voronovskaja’s theorem.

We split the symmetric entropy function (1.1) into two parts in view of the
generalization to the higher dimensional case

f(x) = g(x) +g(1 = x),
g(x) = —xlogx. (2.3)

Obviously,
g'(x) = —logx — 1,

(k —2)!
xk—l

9P (x) = (=) for k>1,

and g <0. Taylor’s polynomial of degree 5 has the form

5 71)/(71 .
= ——————(x — xp)" + linear polynomial.
kz:; k(k — l)x{) 1
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The Bernstein polynomial for Qs is now evaluated at x = x( by using Lemma 4,

:l—x_(l—x)(l—Zx)

Os(x) — B,[0Os](x)

2n 6n2x
(1-x)7* (1-x),
+ 4n2x 1213 x2 [T = 6x(1 = x)]
(1—x)*(1=2x) (1—x)(1—2x)
B 2n3x2 B 20n4x3 (1= 12x(1 = x)]

I I+4+x
= 1 — _—
(1=x) [2}1 + 12n2x]

B L

L9029y .
o 12mx 1202 2w

‘< Ri() +2Onl_4x3m<x>. (2.5)

Next we estimate the function R; in the term of order n73 in (2.5)
Ri(x)=(1- x)(% —x(l =x)— (1 —x)(1 —2x))
=(1-0E-1-0))=(1-xE-1)=-%
The function R, will estimated from below by the trivial bound Ry(x)> — 2. Hence,

Rl(x)+R2(x)>_L< 51 )

2352 " 20m 3T m2x\12nx T 10(nx)?

We estimate now all the terms in (2.4) with a singularity at zero for nx>6:

IR, R 115 1N 1/ 6
12m2x  2m3x2  20m4x37 m2x\12 12nx 60nx)” 12m2x nx)’

By collecting terms we obtain.

Theorem 5. Let g be defined by (2.3). For x=15/n we have

1 —x 1 6 by
_ > "4 (1 =)__=_
90x) = Balgl(x)> wm 12n2x<1 nx) 12n?
1—x n 1 X
2n  20m2x 12n%

(2.6)

=

A symmetry argument yields the corresponding estimate for g(l — x), and the
proof of Theorem 1 is also complete.
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Obviously, an estimate is more easily determined if it is based only on Taylor’s
polynomial of degree 3 and only the first line of (2.4) is taken into account. We note
that the resulting estimate

1 (1-2x)7°

2n 6n2x(1 —x) 27)

f(x) = B[f]x=

however, is not sufficient for our purpose.

3. Behavior at the boundary

In Theorem 1 the neighborhood of the boundary of the interval is excluded. The
behavior near the (left) boundary of the interval will be described by a function of
the variable

Z = nx. (3.1)

The function will be given by a power series; cf. [9], but the required properties will
be determined by numerical computations.
Recalling (2.3) we set

z
£,(z) = n{g = Balgl} ().

The handling of the Binomial coefficients will be simplified by the notation; cf. [1]
W =nn—1)(n-2)...(n—k+1). (3.2)

Since the linear function xlogn is reproduced by Bernstein polynomials [10], it
follows that

Ly(z) = —nxlogx—l—nZ(n)xk(l —x)"*"IfIng
—\k n n

_ klk, k Kk

= —nxlogx—nxlogn—i—nkg ( ) - x)" {Zlogz—i—;logn]
" /n\ sz z

= —zlogz—l—;(k)(n) ( _Z) klogk

n kl

— e (13S0 sk
k=2 :

Obviously z(l —;’)_1 converges uniformly to z on the compact interval [0, 15].

Moreover, Z—f—» 1 for each k. The coefficients of the power series converge for n— oo,
and the limits decrease as fast as the coefficients of the exponential function.
Therefore, by extending the well-known argument for uniform convergence of power
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series we conclude that £, converges uniformly on the interval [0, 15] to

©_ _k
L(z):= —zlogz+e’zz %klogk
= "

0 k
= —zlogztze” Y %log(k—l— ). (3.3)
k=1 """

The complementary function from (2.3)

Xk

h(x) =g(l —x)=—(1 —x)log(l — x) :x—kz:; k=D
and the difference to its Bernstein polynomial are easily estimated by
[7(x) = Bu[h](x)| < [A(x) = x| + [Ba[h — x| ()]
<x2+x2+féﬁ for 0<x<£. (3.4)
non n

Therefore, g(1 — x) does not contribute to the asymptotics and

V4

0 k
Tlim n{f - B,,m}(ﬁ) = L(z) = —zlogz+ze7 Y %log (k +1).
k=1 """

The function £(z) is depicted in Fig. 1.
The descent of f — B,[f] from Voronovskaja’s bound to zero is confined to an
intervals of length 1. This is expressed in the form

im - min { /() =~ B0 + 5 {800 + B0} =5 3.5)

n—- o 0<x<l 2n

0.6 4 ~

05 +—Ff————————————— === === — ————=

0.4 1

0.3 1

0.2 1

0.1 1

0 1 2 3 4 5 6

Fig. 1. Asymptotics of the error at the left end of the interval for —xlog x: £(z) and the modification in
(3.6), (dashed).
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This remains true if in addition the non-negative function %4[Bf + B;_,] is subtracted
from L. To verify this, we have depicted in Fig. 1

L(z)+e~ G - %z) (3.6)

in addition to £. Summing up, the asymptotics of n(f — B,[f]) is now completely
characterized by Theorem 1 and (3.5) or Fig. 1, respectively.

4. Extension to several variables

We are now turning our attention to the approximation behavior of Bernstein
polynomials for the multivariate entropy function

m

f(u) = —Z uj log uj, (4.1)
=0
where the components u;, j = 0, ...,m of the vector

m
uel,, = {u (g, ., thy) ER™ 2 1y >0, E U= 1}7
Jj=0

can be viewed either as probabilities or as barycentric coordinates in the unit simplex
A,;,. The multivariate Bernstein polynomial on the simplex now takes the form

Blflw) = Y f(3)Baw),

€ mn

where

m
Kpn = {oc = (00, +vry O ) NIy = |or] = Z x,}

is the set of all homogeneous multiindices of length |«| = n. Note that in the above
notation the univariate basis polynomial B} (x) coincides with B, (1 — x,x).

Before we investigate the multivariate approximation behavior of B,[f], we depict
the error of approximation f — B,[f] in Fig. 2, showing that again at the boundary,
in particular close to the corners, the error of approximation is significantly higher
than the ““plateau” of value 1 that is approached in the interior of the triangle. Also
note that at the boundary the univariate approximation behavior is visible, now
however with the associated limit value %

In the following lemma we will state an elementary identity which will allow us to
reduce the approximation of the function f from (4.1) to the univariate case.
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Fig. 2. Approximation behavior of n{ f — B,[f]}, here for n = 20 and m = 2.

Lemma 6. For any set of functions G; : [0,1] x Ng— R we have

Z Ba(u)z Gj(ujaaj) :Z BZ(uf)Gj(uj’k)'
2K j=0 =0 k=0
In particular, if

m

0= gw). then Blolw =" Blglw)

J=0 Jj=0

195

Proof. Define, for any a«eK,,, and 0<j<m the reduced multiindex @ := o — oe;,
which coincides with o except that its jth component has zero value. We decompose
the basis polynomials B, in a fashion similar to tensor products, cf. [4,12], to obtain

0 €lnn j=0
m n
=X > 2 Glywy)Bw
J=0 =0 o €Kit
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m

- w1 n—of
=2 D Glum)yf (o + -+ + w1 + w1 + -+ )
=0 =0 %

m n n e m n
=353 Gl () )t - =30 > G B )
=0 k=0 =0 k=0
This proves (4.2). By setting G;(u;, ;) == g;(k/n) we obtain (4.3). [

Combining Lemma 6 with Theorem 5, we derive the multivariate counterpart of
(2.2).

Theorem 7. Let the function [ be defined in (4.1). For any ue A, such that u;>15/n for
j=0,1,...,m we have

£ - Bl >0+ 50 Z - (44)

To extend our estimate to the boundary also in the multivariate case, we will again
appeal to (4.3) and make use of the univariate estimates obtained in the preceding
chapter. To that end, we define for ueA,, the two index sets

15 15
I>:{j:u,~>—} and 1. ::{j:u;<—}
1z, T

of cardinality m + 1 — k and k := #I ., respectively. Then we obtain from (2.6) that

jelx jels

m+1—k
Z7 ( 12n)2”1

jelx

m+1-—k 1 1 12k m—k
> _ — _ R — = —
Z7 2 (2+12n) (1 n ) 5+ o).

Taking also into account (3.3) we thus end up with

n{f — Bu[f]}(u )>—+Z L(nu) + O0(n™"),

Jjel<

or, with any ze R""! such that |z| = n,

ntr =)= Y L) +ou). (4.5)

Jizp<12
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Since the basis polynomials B, decrease exponentially away from the vertices of the
simplex, now the counterpart of (3.5) becomes

. . 1 1

Jim min n{ SW) = Bul /1) +5- > Be,-(u)} = (4.6)
which is always assumed on the boundary, see Fig. 2. In general, on a k-dimensional
face of the boundary the minimum on the interior of it would be ]7‘

5. An application from learning theory

Theorem 1 and the knowledge of the Bernstein approximation in the region next
to the boundary enables us to determine the exact asymptotics for a problem in
learning theory.

The symbols A4y, A1, ..., A,, of an alphabet with m + 1 letters are to be encoded.
The length of the codes may be different for the letters. Following [13] it is possible
to have a code with length logé for the letter A4; if > ;" ¢; = 1. If the symbol 4; is

found with the probability p;, the expectation value of the code length is

m
1
> pilog—
i=0 q

i

The minimum of this expression is attained if g; = p; for all i. If the lengths ¢; differ
from the optimal values, there is a redundancy, i.e. a difference to the minimum of

> pi 105%. (5.1)
i=0 ¢

First we restrict our attention to the special case m = 1. Here the sum (5.1) may be
rewritten as

)4 l—p
plogq + (1= p)log— 7 (52)
if wewrite py =p,po=1—p,q1=¢q,and go =1 —gq.

The probability p is unknown, but we have got a sample with n letters. The
encoding will be performed on the base of the information, how often the symbol 4,
is contained in the sample. Due to Bernoulli, the probability for finding it k& times in
the sample is

(;)a=rrs = o)

Now, an appropriate rule k+— Q(k),0<k<n, is to be found for the encoding
procedure. If the sample contains the symbol 4 exactly k times, the encoding for the
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parameter g, = Q(k) is chosen. The associated contribution to the redundancy is

p
1(p)|plog -+ (1 —p)logy
qk -
Summing over all k& we obtain the expectation value of the redundancy [7,9].
Therefore, the following problem arises:
Find numbers q;,€(0,1), k =0,1, ... n, such that the worst case redundancy
sup F,(x) (5.3)
0<x<l1
is minimized where

n

Fy(x) = Z%(Z)xk(l —x)"_k [xlog;c+ (1 —x)log 11 —x}

k= — 4k
ZB',;(X)[xlogx+(1x)1og I_X} (5.4)
= Gk 1 — gk

The challenge consists of determining the numbers ¢; in such a way that the
optimal asymptotics are obtained inside the interval and on its boundary
simultaneously.

There are already several results for the rule called add-f rule,

RS
k- n—i—Zﬁ

The parameter f§ describes the deviation of ¢, from k/n, ie. from the relative
frequency of A; in the sample. In particular, the add-one rule is called Laplace’s rule
of succession, and the add-half rule is Jeffreys’rule. Krichevskiy [9] reported that
o = 0.50922 leads to

lim sup nFP(x)=p,=0.50922,

n=9% 0gx<l

for k=0,1...,n. (5.5)

while the corresponding number for Jeffrey’s prior is 0.5106 due to our calculations.
Moreover, Cover [6] had shown the lower bound

lim sup nF,(x)>0.5 for all choices of g,

n— oo OSXSI

by applying a suitable functional and the add-one rule.

We will close the gap by applying Theorem 1; cf. [5]. Our point of departure is the
add—% rule. This rule is optimal in the interior, and it will be modified later to cover
also the subdomain next to the boundary. Since we fix the parameters in the one-
dimensional case such that g; + ¢, = 1, it follows that F(1 — x) = F(x) and

Fy(x) = Gu(x) + Gy(1 — x),

where

Gy(x) = n()(Z)xku —x)"Fxlog X (5.6)
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Following Forster and Warmuth [7] we study the function for n — 1 letters and
separate the Bernstein polynomial for the function g defined in (2.3)

n—1 n—
G (x) = —Z( ) 11— X" log i — g(x)

= - i(;)#‘(l - X)”_kglog Gk-1 = 9(x)

y (")x’m— o Helog L+ (B fl(x) — g} (5.7)

qk—1

The add-p rule (5.5) for n—1 reads gx == 1 +2/3 We can extract the terms with
o= 1+2ﬁ since they belong to a Bernstein polynomial for a linear function that is

Elog
reproduced
1 I (/n _ k n—1+2p
B _ k1 — V" %k log — logr —_— TP
G, (x) nkg_o(k>x( X) kng—1+[§+x og
(5.8)

Now we fix f=p, = i, since the following estimate of the power series of the
logarithm is an helpful upper bound only for %s p<1,

klog g /i =
1 4
STk T30k
I I 1
SiTRE ) Tk Dk 2)

When estimating the sum in (5.8) we note that (,’Z)% =x! (Zﬂ) nf:: and an
analogous formula holds for the term with the quadratic denominator. Hence

n

Z(Z)xk(l —x)"kklogk_kl/4

k=0
<> (Z)xk(l —x) H* 32(k1+ 0Tk IIW“L 2)]

HM

k=0
<1 n 1 n 1
T4 Rm+Dx T(n+1)(n+2)x2
1 1 1
<+ ————— =Z—. 5.9
4+24(n+1)x orx=y (59)
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From the previous bound and Theorem 5 it follows that (for x;%}

1/1 1 1
ﬁ* < | = R
G”l(x)\n<4+24(n+ 1)x> +xlog<l +2n)

1 1—x+ 1 X
n 2 20nx 12n

1 1 X
<-| — — . .
n( 4+x+12n) (5.10)
Hence,
B, 1 1 15 15
F <—+—= fi —<x<1l ——. 5.11
w1 (%) 2n+12n2 or G n (5-11)

This is the required bound for the interior of the interval.
We note that we can drop the restriction %S p<1 if we are interested in G;/j_1 for
x>1. In this case it is no drawback to have a larger factor in the 1/(n’x?) term in

(5.9). Repeating the calculations with the power series of the logarithm, we obtain

11
2’2

Gf_l(x)<%<1x+ﬁ(2x—1)+%> for x>=,-<p<1. (5.12)

2
Now we consider the add-f rule at the left-hand boundary with emphasis on the
choice i = f, = %. This will be done in the spirit and with the tools of Section 3.
Since the bound (5.12) is sharp for x— 1, (or alternately from (5.6)) it follows that

nG?

n—1

(1=z/n)>p for n- . (5.13)

Moreover, terms of the size xO(n~!) are obviously zO(n~2). Now it follows from
(5.8) with the argument as for the verification of (3.3); cf. Krichevskiy [9] that

' (z) .= lim an"(Z)

—ey ikl L+ﬁ—c()
BRI My -
0k
- z
=f+zlogz—e ;Hklog(k—l—kﬂ)
N
=p+zlogz—ze ‘;Elog(k—&—ﬁ). (5.14)

The convergence is uniform on compact intervals.

Obviously, @ 0)=p,= %, and the choice (5.5) is not appropriate for the
boundary region as depicted in Fig. 3. The rule will become optimal if we modify ¢
and ¢ in an appropriate way. The symmetry requirement g; + ¢,_x = 1 causes that
¢, and ¢, will be also modified. Since we consider only the subdomain where x<%7
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0.7 1
0.6 1

o5 A —_—

0.4 4

03"
0.2 |

0.1 -

0 1 2 3 4 5 6

Fig. 3. Asymptotics of the entropy at the left end of the interval: &(z) and & (z). The maximal value is
~0.5027 if only gy is modified.

the contribution of ¢, and ¢, ; is O(n~?). By taking differences we obtain

ab 1 —d)
Fo(x) — FF(x) = (1 = x)"{ xlog =% + (1 — x) log 0%+ nx(1 —x)"!
90 1 —qo
B 1— B
X {x,logg—l—i— (I-x) log1 Zl} +0(2™). (5.15)
1 — 41

The shifts will be bounded by 1/n. Hence,

1—q£:

lo
gl—Qk

Qk—qﬁ B
log 1+1 qk =qr—q, +0n?) for k=0,1. (5.16)
— gk

We insert (5.16) into (5.15) to obtain
5y _ FP(E)] — ot % p
n[Fu(G) — F, (7)) = e {zlog 2+ n(qo — qo)}
s
+ze{zlogZ + n(qy — )} + O(n 7). (5.17)

Now we are ready to present the final choice. Here, the add-f rules for f = %, % and 1
are combined,

L2 i ko
Sl ik,

=1 e i k=n—1, (5.18)
0 i k=
];21372‘ otherwise.
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We insert the actual numbers in (5.17) and take the limit »— oo to obtain
N 1 3.1 2
é — P —z|__ loc=+ -4 — 22100 =1 .1
(2) (z2) +e [ 4+z{0g2+4} z og7/4] (5.19)
The extra term in (5.19) is negative for z>5 and does not spoil the bound from

(5.10). Moreover, as is shown in Fig. 3 for the interesting part of the interval, we
have now

d(z)<z for z<IS5.

N —

This extends estimate (5.11) to all of [0, 1] for the modified rule, and the upper bound
of the asymptotics is complete for m = 1.

In view of the extension to the multivariate case m>1 and an application of
Theorem 7 we introduce the function

G (x) = GP(x) + {—% + xlog %} Bj(x) + [% —xlog %] Bl (x) (5.20)

which realizes the decomposition of F; into barycentric coordinates: F;(x) =
G,(x) + G,(1 — x). Based on the preceding estimates we can immediately establish
the inequality

Gu(x)<=(—1+x)+o(m™") for 0<x<l, (5.21)

S|~

where the o(n~!) term is independent of x.

Indeed, if x>1, then (5.21) follows from G, (x) <G (x) and (5.10). If x = 2<13,
then recalling (5.13) we have (n+1)G(z/n)—>®(z) — ,< — 1, and x/n<15/n?
together with the uniform convergence implies (5.21). Hence,

Fi(9) = Go() + Gall = ¥ <o+ ol

and we have verified the upper bound

. 1
lim sup nF,(x)=rx.

-0 g<y<l 2

It cannot be improved due to the known lower bound [6].

The shift of gy was necessary since ®+(0) = f, >%, see also Fig. 3. Therefore, g is
chosen according to Jeffrey’s rule. This shift induces a deterioration in the interior,
which can be compensated by a shift of ¢; into to opposite direction. From (5.19) we
conclude that the additive term induced by the two shifts reduces the redundancy for
z =nx>=5. As a consequence, the bound (5.11) is improved and not deteriorated.
This can be understood as motivation for two shifts.
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6. Multivariate renormalization

We now turn our attention to alphabets consisting of the m + 1 symbols
Ao, ..., Ap. Since the probabilities p; of the symbols A4; are independent, the
important information about a sample of the length n is how often each of the
symbols appeared, which can be written as a multiindex «eC,,,,. Now, a code with
the parameter g(o) = (¢;(x):j=0,...,m) is associated to any sample, and the
deviation of the expected code length from entropy takes the form

= 4

as already mentioned above. Since the probability of « to appear is B,(p), the average
deviation from entropy is thus computed as

Fip) = Fulp) = 30 B0)Y pytog 2L (6.1)
=0

o€ mn 4 (

which is the natural generalization of (5.4), cf. [5]. To continue our approach from
the theory of Bernstein polynomials, we will again use the symbol u for the
probabilities p; that are interpreted here as barycentric coordinates of an m-simplex.

To be able to apply Lemma 6 to (6.1) for a reduction to the univariate case, we
would need that

gi(@) =qi(o), j=0,....m, o€ky,, (6.2)

an assumption that is too restrictive. The prediction rules we are going to use in the
multivariate case will depend on both j and o as

oy + ﬁ(OCj)

qj(o) = RS B (6.3)
where
1/2 k=0,
Bk) =<1 k=1,

B. =3 otherwise.

Note that these values do not have the property (6.2). For this reason we introduce
renormalized quantities

=) _ %+ Bly)

gi(0) =r(oy) = Py

It will be no drawback that 3 g;(«) # 1 holds for some o.. These auxiliary parameters
can be accessed by Lemma 6 as follows:

Fugl) = 3 Buw) Y ulog
=0

o€ K n—1

m n

=2 Y wBw)log s (64)

q; j=0 k=0
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We consider the difference

+Zl Oﬁ(al)
n+(m+1)B,

—log <1 " Do (Blow) — /ﬂ))

w+ o+ DR,
(B — )+ om0 S 1) -
=0 i=0

log §j(2x) — log g;(x) =log -

1
<_
n 4

1

For convenience, we will ignore the last sum since it contributes only to O(n~2?) and
can be handled analogously to the first sum. Noting that this expression is
independent of j we thus get

Faglt) = Fug)< - 3" B S > (Blo) )

o j=0 i=0

= S B ()~ )
o i=0

=S B@)lp) - )
i=0 k=0

:% (=1 B2 () + 1 B (). (6.5)
i=0

The summands in (6.5) correspond to two additive terms in (5.20). From the
identities (6.4) and (6.5) it follows that

Fnﬁq(”) :Fn,ti(“) + Fn.q(”) - Fn,ti(“)

(6.6)

S 71 Uj 1 -
2 Bilwuylog e = o Bi(w) + g Bily)).

Jj=0

The inner sum is now evaluated by comparing it with Gf*,

n

u
; By (uy)uj 10gT]J€)
N Uy n+(m+1)B,
_;O B} (uj)u; {log(k+ﬁ*)/j(n+2,8*)+10g T

+

B (uj)u; log3 — B (u;)u;log}

-1
Gﬁ*(“j)Jri(m . L

u; +o(n” )+B”(u])u]10g2 B (uj)u;log}.
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Combining this with (6.4), (5.20) and (5.21) we obtain

Fuglu) = jzmoj[énwj) o]
< g[%(%Jruj) +mT_1%u_,} +o(n")
=%[—MTH+ 1+ 0m = 1)} +o(n™")
Z%—Fo(n h

This completes the proof of our final result.

Theorem 8. For the choice (6.3) of the prediction rule q;(o) we get that
m

lim max nF,,(u) = —=
>0 uehy, nv‘]( ) 27

which is the asymptotically optimal bound.

205

We remark that for the optimal ¢ even the bound (n + 1)F, , <% holds true, but of
course passing from n to n 4 1 is irrelevant as far as asymptotics are concerned. To
highlight the structure of F, ,, we depict it for m = 2 and n = 25 in Fig. 4. Note that

0.991

0.867

0.744

Fig. 4. The redundancy (n 4+ 1)F,, for the optimal ¢ from (6.3), n = 25.
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the extremal value is approached by the narrow ridges close to the boundary as well
as in the interior of the simplex. It is also worthwhile to remark that along those
boundary ridges the univariate behavior of the function can be observed. In fact, we
always first have a sharp decrease from the value at the corners, which is due to the
add—% rules there, followed by a narrow ‘““overshooting” due to the add-1 rule, then

as small local minimum from which the function smoothly ascends to the interior
limit function.
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